II. A. TAJMIR-RIAHI and T. THEOPHANIDES

Université de Montréal, Départment de Chimie, Montreal, Que. H3C 3V1, Canada

Received May 5, 1983

Several complexes of Pt(II) and Mg(II) metal ions with adenosine-5'-monophosphate have been isolated. The complexes are of the formulae cis and trans- $[Pt(L)_2(NH_3)_2]$ $Cl_2 \cdot xH_2O$, $Pt(L)_nCl_2 \cdot xH_2O$ and Mg- $(L') \cdot xH_2O$, where n = 1, 2, 3, x = 5, 6-10 and L =disodium salt of adenosine-5'-monophosphate (5'-AMPNa₂) and L' = adenosine-5'-monophosphate dianion (AMP²⁻).

Due to the distinct spectral similarities with the structurally known N_7 -bonded $Ni(5'-AMP) \cdot 6H_2O$, the mononucleotide binds to Pt(II) and Mg(II) ions through the N_7 -atom of the purine ring system.

No direct metal-phosphate interaction was observed for the platinum(II) complexes synthesized here. The Mg-AMP compounds showed direct Mg-phosphate interaction if prepared at acidic pH and no direct Mg-phosphate bonding was observed when prepared at neutral or slightly basic pH values.

Introduction

In our previous report [1], we demonstrated how guanosine-5'-monophosphate (5'-GMP) is bonded to Mg(II) and Pt(II) metal cations through the N₇atom of the guanine base. Evidence for this came through comparison of the spectroscopic properties of a series of structurally known N₂-bonded metal-GMP complexes with those of the corresponding Pt(II) and Mg(II) complexes. In the present work, several complexes of 5'-AMP with Mg(II) and Pt(II) metal ions which have not been reported before have been synthesized and characterized by elemental analysis, molar conductivity and FT-IR spectroscopy. The structurally known [2] Ni(5'-AMP)·6H₂O compound was prepared and its FT-IR spectrum was recorded in order to detect any characteristic features of each structure which could be compared with those from the spectra of Mg(II) and Pt(II) complexes and to establish a correlation between spectral

change and the N_7 -coordination sites used by 5'-AMP.

Experimental

Materials

All the chemicals were reagent grade and used without any further purification. K_2PtCl_4 was purchased from Johnson Matthey and Mallorty Ltd., and was converted to *cis*- and *trans*-Pt(NH₃)₂Cl₂ according to routine methods [3]. 5'-AMP acid and sodium salt forms were purchased from Sigma Chemical Company.

Synthesis of Pt(II) Complexes

The Pt(II) complexes of 5'-AMP were prepared by the addition of a stoichiometric amount of K2-PtCl₄ or cis- and trans-Pt(NH₃)₂Cl₂ to the solution of the nucleotide in 200 ml of water, in the presence of the appropriate amount of NaCl at room temperature and at pH = 7. The solutions were kept in the dark for one week and then the amount of water was reduced to 40 ml under low pressure at 50 °C. A mixture of ethanol-ether (50 ml) was then used to bring down the precipitate (yellowish) which was redissolved in a small amount of water and reprecipitated by the addition of ethanol-ether, then dried in a desiccator over CaCl₂ and analyzed to have the empirical formula of $Pt(L)_nCl_2 \cdot xH_2O$, where n = 1, 2, 3 and x = 6. The complexes are soluble in H₂O and acidic solutions only and not in the common organic solvents. Their colour varies from yellow for the 1:1 to white for the 3:1 complexes. They show high values for molar conductivity, and this is mainly due to the presence of Na⁺ ions [4] associated to the 5'-AMP Na2 molecule. In these Pt(II)-AMP complexes the Pt(II) ion does not replace the sodium ions from 5'-AMPNa₂. The analysis and millimolar conductances are shown in Table I. The structurally known Ni(AMP).6H₂O

© Elsevier Sequoia/Printed in Switzerland

Co	ompounds		M ²⁺	С	Н	N	Cl	Colour	Conductivity $(\Omega^{-1} \text{ cm}^2 \text{ mol}^{-1})$	pН
1.	K[PtLCl ₃]C ₂ H ₅ OH ^b	Found.	24.77	18.30	2.50	8.90	13.53	yellow	200	7
		Calc.	25.04	18.50	2.44	9.00	13.68			
2.	$PtL_2Cl_2 \cdot 6H_2O$		16.85	20.03	3.79	11.21	5.85	pale yellow	250	7
			16.83	20.72	3.28	12.10	6.13			
3.	[PtL ₃ Cl]Cl·6H ₂ O		11.15	21.92	4.25	12.28	4.20	white	300	7
			12.58	22.22	3.25	13.54	4.58			
4.	cis-[PtL ₂ (NH ₃) ₂]Cl ₂ ·6H ₂ O		16.45	18.93	3.78	13.42	5.95	white	250	7
			16.35	20.13	3.69	14.10	5.96			
5.	trans- $[PtL_2(NH_3)_2]Cl_2 \cdot 6H_2O$		16.30	19.23	3.89	13.68	5.95	white	220	7
			16.35	20.13	3.69	14.10	5.96			
6.	MgL'·10H ₂ O		4.10	21.69	4.76	11.51		white	160	7
			4.44	21.77	5.98	12.70				
7.	MgL'•5H ₂ O		5.10	25.83	4.95	13.84	_	white	120	4
			5.31	26.03	4.98	15.18				

TABLE I. Analytical Data and Millimolar Conductances of Pt(II) and Mg(II) AMP Complexes.^a

^aL is 5'-AMPNa₂ in all the Pt(II) complexes and L' is AMP^{2-} in the Mg(II) compounds. ^bThe amount of K⁺ calculated is 5.00 and found 4.70.

complex was prepared by routine methods [2] and was analyzed for metal.

Preparation of Mg(II) Complexes

The magnesium(II) complexes were synthesized at two different pH ranges, namely 6-4 and 7-9. The nucleotide, 5'-AMPNa₂ (1 mmol), was dissolved in 30 ml of H₂O and added to the solution of 1 mmol of MgCl₂·6H₂O in 20 ml of solution. The pH value was adjusted as mentioned above with $0.1 N HNO_3$ or 0.1 N NaOH, then it was heated at 60 °C for 30 minutes to redissolve the formed insoluble precipitate. After cooling down to room temperature, a white precipitate appeared. This was filtered off and washed with cold water and air dried. The Mg(II) complex synthesized from acidic media is not soluble in H₂O and can be recrystallized from acidic solution, whereas the Mg(II) compound obtained from neutral or basic pH is very soluble in hot water and crystallizes from aqueous solution. The complexes show a conductivity value of 120–160 Ω^{-1} cm² mol⁻¹, corresponding to 2:2 electrolytes [4] (the Mg(II) ion replaces the Na⁺ ions in 5'-AMPNa₂). The analytical data and millimolar conductances are given in Table I.

Physical Measurements

The FT-IR spectra were recorded on a DIGILAB FTS-15/C Fourier Transform Michelson Infrared Interferometer, equipped with a high-sensitivity Hg-CdTe detector and a KBr beam splitter with a spectral resolution of 2 to 4 cm⁻¹ and KBr pellets. Conductance measurements were carried out on a E365B METROHM conductoscope.

Elemental Analysis

The Pt(II) content was analyzed by atomic absorption and the Mg(II) content determined complexometrically. C, H and N were analyzed at Schwarzkopf Microanalytical Laboratory (US). The halide was determined as silver halide.

Results and Discussion

X-ray analysis shows [2] that the Ni(II) ion is bonded to the N₇-atom of the adenine ring, as well as to five water molecules in the Ni(AMP)6H₂O compound (two of these water molecules are strongly hydrogen-bonded to the phosphate group). The FT-IR spectrum of this compound is recorded and compared with those of the corresponding Mg(II) and Pt(II) complexes, studied here. The results are discussed in two regions, namely 4000-2700 cm⁻¹ and 1700-400 cm⁻¹. It should be noted that our discussion is largely based on the assignments made by Lord and Thomas [5], Novak [6]. Chinsky [7] and the normal mode calculations by Tsuboi et al. [8-11], and is in good agreement with the observations of these authors. The structure of 5'-AMPNa₂ with the numbering of the atoms is illustrated below:

Fig. 1. FT-IR spectra of 5'-AMPNa₂ and its metal complexes in the region $1800-400 \text{ cm}^{-1}$ for a, 5'-AMPNa₂; b, Ni-(AMP)6H₂O; c, Pt(AMP)₂Cl₂•6H₂O and d, [Pt(AMP)₃]Cl• 6H₂O.

$4000 - 1700 \ cm^{-1}$

In this region, due to the presence of strong intramolecular hydrogen-bonding in both the free 5'-AMP acid [12] and its metal compound [2], it is very difficult to draw any conclusions on coordination sites used by the free base on complexation. The asymmetric and symmetric stretching vibrations of the hydrogen-bonded NH2, NH, OH as well as the aromatic C_2 -H, C_8 -H and the sugar exocyclic stretching frequencies appear in the spectra of the free ligand and show no considerable alteration in the spectra of 5'-AMP metal complexes. The small shifts of the bands observed in this region of the spectra are mainly due to rearrangement of the strong hydrogen-bonding network of the free base upon complexation. The possible assignments of the bands related to this region of the spectra are given in Table II.

$1700-400 \ cm^{-1}$

The free 5'-AMP shows a broad and strong absorption band at 1655 cm⁻¹ and two other bands with medium intensities at 1606 and 1576 cm⁻¹, which are mainly assigned to the bending (scissoring) mode of NH₂ and the stretching vibrations of C_5-C_6 and C_4-C_5 frequencies, respectively [8–11] and are strongly coupled. These absorption bands appeared at 1665, 1605 and 1579 cm⁻¹ in the spectrum of the structurally known N₇-bonded Ni(AMP)•6H₂O. The small shifts of the bending mode of NH₂ at 1655 to 1665 cm⁻¹, together with the NH₂ stretching vibration at 3400 cm⁻¹ to a lower frequency, are due to replacement of the intramolecular hydrogen-bonding of the NH₂ group in the crystal structure of 5'-AMP acid [12] (the NH₂ group is

Fig. 2. FT-IR spectra of 5'-AMP-metal complexes in the region $1800-400 \text{ cm}^{-1}$ for a, *trans*-[Pt(AMP)₂(NH₃)₂]Cl₂·6H₂O; b, *cis*-[Pt(AMP)₂(NH₃)₂]Cl₂·6H₂O; c, Mg(AMP)·5H₂O (pH = 4) and d, Mg(AMP)·10H₂O (pH = 7).

hydrogen-bonded to the phosphate group and a water molecule), by the stronger hydrogen bonding of the NH₂ group to a coordinated water molecule in Ni-(AMP)·6H₂O [2]. These changes are not due to any kind of metal-NH₂ interaction, where metalation or deprotonation of the NH₂ group causes alteration or disappearance of the absorption frequencies of this group [13, 14].

It has been suggested that N₁-coordination causes a split of the absorption band at 1598 cm⁻¹ to a doublet at about 1618 cm⁻¹ and at 1604 cm⁻¹ in the spectra of 9-Me-adenine mercury complexes [13]. Such a split does not occur here in the spectra of N_7 -bonded Ni(AMP)·6H₂O and our Pt(II) and Mg(II) complexes (Figs. 1 and 2). The band at 1576 cm^{-1} , in the spectra of the free base, shifted to a higher frequency in the spectra of Ni(II), Pt(II) and Mg(II) complexes. This small shift is due to the inductive effect of the metal ion electrophile bonded to the N₇-coordination site, which causes less electron delocalization, and finally less contribution to the skeletal vibration of the ring system. Similar shifts were observed in the IR spectra of N₇-bonded 9-Meadenine mercury complexes [13].

The two absorption bands at 1506(w) and at 1479 cm⁻¹ (m) in the spectra of 5'-AMP were mainly assigned to the purine ring vibrational frequencies [8, 10]. The former shifted to about 1510-25 cm⁻¹ and the latter showed splitting and considerable intensity changes in the spectra of Ni(II), Pt(II) and Mg(II)-AMP complexes (Table II). Since these absorption bands contain C₈-H bending and N₇-C₈ stretching frequencies [8, 10], this indicates that the N₇-position of the adenine ring is also the possible

I ABLE II. I	indinent will							
5'AMPNa ₂	Ni(AMP)6H ₂ O	KPI(AMP)Cl ₃	Pt(AMP)2Cl2•6H2O	<i>cis</i> -Pt(NH ₃) ₂ - (AMP) ₂ Cl ₂ · 6H ₂ O	<i>trans</i> -Pt(NH ₃) ₂ - (AMP) ₂ Cl ₂ •6H ₂ O	MgAMP10H2O	MgAMP5H ₂ O	Possible Assignments
3543m	3520m	3540m	3530m	3520m	3530m	3530m	3520m	
3471m	3446m	3460m	3450m	3440m	3455m	3450m	3440m)	vNH ₂ asymmetric [5, 9]
1	3427m	3420w	3430m	3410w	3415m	3430w	3400m)	
3379s	3387s	3380s	3370m	3365m	3370s	3385s	3380s }	VNH ₂ symmetric [5, 9]
3354s	3355s	3350s	3360m	3350s	3360s	3340s	3350s)	
3331s	3331sh	3330s	3340s	3330s	3335m	3330m	3330m }	vOH bonded [5, 9]
Ι	3320m	3315m	3320w	3325m	3320m	3325m	3330m)	
3271s	3288m	3280s	3275m	3265m	3260m	3275m	3275m)	
3234s	3255m	3250m	3 240m	3245s	3235m	3250s	3250m }	νNH_2 and $2x\delta(NH_2)$ [6]
I	3223m	3225w	3215m	3220m	3215w	3220w	3220w)	
3190s	3190s	3180m	3175m	3185m	3170m	3190s	3180w)	
3167vs	3157m	3165s	3155s	3160s	3155s	3160m	3150m J	M8-H [0-10]
3111s	3134m	3125m	3120m	3130s	3125m	3120s	3130m]	
1	3100w	1	1	1	I	I		$n^2 - n [o - 10]$
3068m	3070w	3080m	3070m	3065m	3077m	3075m	3080m)	
I	3030vw	i	-	1	I	i		[01-0] HNM
2970w	2960m	2960w	2970m	2950m	2965m	2950w	2975m j	
2929m	i	2925w	2930m	2920m	2930m	2939m	2940m	vCH ₂ asymmetric [5, 9]
2881m	2880w	2880m	2870m	2875m	2870m	2870m	2860w	$\nu(CH_2)$ symmetric [5, 9]
2850vw	I	1	ł	1		i	-	•
2800vw	2800vw	2800w	2790w	2790w	2800m	2800vw	2780w {	ν(CH) [5, 9]
2744w	2760vw	2760w	2755w	2740w	2760w	2750w	2750w)	
1655vs	1665vs	1660vs	1660bs	1658bs	1660	1670sh	1660sh (6 NH- (8 10)
I	I		1	I	1	1660vs	-	[01-0] ZIIII0
1606s	1605s	1605sh	1600sh	1601sh	1600sh	1606s	1600sh	νC ₅ -C ₆ , δNH ₂ [8-10]
1576s	1579m	1584m	1583т	1585m	1580sh	1579m	1573w	νC4-C5, νN3-C4-C5 [8-10]
1506w	1510w	1510w	1525w	1525w	1515m	1510w	1510sh	$\nu C_8 - N_7, \delta C_8 - H [10]$
	1478s	1497s	1492s	1496s	1490s	1479s	1481vs (δC ₈ -N ₂ , νC ₈ -N ₈ , δC ₈ -H, δC ₂ -H
147/9S	1	-	1				-	[8, 10]
- 1175ab	MIC+1	1400VW	14655n 14236	1438W	1400W	1465W	(– –	
1421m	14 7 4 m		142000	14.15w	1410w	14 20 W	M07+1	0CH2, 0CH [24]
1398w	1397w	ŧ				1400sh		$\nu N_1 - C_6 - N_6 [8]$
1375m	1375w	1370sh	1370vw	1375sh	1380w	1390m	1380sh	vPyrimidine ring [6]
1334m	1335m	1343m	1343m	1340m	1345m	1338m	1339m	$\nu C_8 - N_9, \nu C_2 - N_3, \nu C_5 - N_7, [7, 8]$
1	1300w	1304sh	1300m	1300sh	1310sh	1300m	1304m)	
1303m	1	t	ł	I	I	I	-	$\delta C_8 - H$, $\nu N_7 - C_8$ [7, 8]
I	1280m	1260sh	1250sh	1290w	1290w	1270w	-	
1245m	1248sh	1248sh	1245sh	1246sh	1250sh	1248m	1252m	$\nu N_{7} - C_{8} - N_{9}, \nu C_{2} - H, \delta N_{1} - C_{8}$ [7,8]

186

	νN ₇ - C ₈ , δC ₈ Η [8- 10]		νC ₈ -N ₇ , δC ₆ -NH [8-10]	vC-0 [9]	$\frac{1}{1000}$ $\frac{2}{1000}$ $\frac{1}{10000000000000000000000000000000000$	PrO3 ueg. [2, 20]	vPO ² ² sym. [9, 20]		vribose-phosphate [23]		P-0 [9, 20]	vribose-phosphate [23]	breathing-mode [8]	imidazol ring def. [18]		0111, 0C6 - 1112	PO ₃ ² deg. def. [9, 20]	SNU	0 MH, 110056 UEL. [3, 23]	νPO ₃ ²⁻ asym. def. [9, 20]	skeletal def. [11]	
-	~	1213m)	1180sh	1148s	1111s (1088s J	999vs	900m)	870m	815sh)	797s	1	-721m	I	647m)	 	580w	555s \	540sh J	470w	430m	
1220sh		1215m	1184sh	~	1111bs		996s	901w	868w	816s	795sh	768m	717s	687w	640s	i	577sh	555m	ı	503m	426vw	
1245sh		1213s	1180sh	1112sh	1080bs		975vs	905m	87.5m	810sh	791s	ł	718m	ſ	646m	610w	585w	550m	530m	480sh	420w	
1240sh		1215s	1181sh	1110sh	1085bs		974vs	900m	880w	815sh	793s	I	719m	1	644m	611vw	592	557sh	532s	475sh	430w	stretching, 8, bendi
ł		1215s	1180sh	1107sh	$1084 \mathrm{bs}$		974s	904m	890w	810sh	793m	I	719m	687vw	640m	I	590w	550m	525m	510w	420vw	; w, weak; v, very; <i>v</i> ,
I		1213s	1180m	1110sh	1074bs		974s	4006	870w	810w	783m	ł	720w	ł	640m	609vw	594 w	555sh	522s	513vw	430vw	road; sh, shoulder
1229sh		1219m	1180m	1111vs	1072s		980s	903m	881m	835m	806s	771sh	710m	686w	650sh	636m	594w	555m	553m	480w	420w	, medium; b, b
	1215m		1175sh	1110sh	1092bs		976vs	900w	869w	815sh	797m	777sh	728s	684 vw	646sh	616w	570w	530s	540w	480w	420m	s, strong; m

I

coordination site for Pt(II) and Mg(II)-AMP complexes. Similar shifts have been observed [15, 16] in the vibrational spectra of the divalent metal complexes of the N₇-bonded ATP (adenosine-5'-triphosphate) and the 9-Me-adenine platinum(II) complexes.

Four absorption bands at 1303(m), 1245(m), 1215(m) and 1175 cm^{-1} (sh) in the spectrum of the free base were assigned mainly to N7-C8, N7-C8-N9 stretching and C_8 -H bending frequencies [8-11]. The 1303 and 1215 cm^{-1} absorption bands each appeared as a doublet at $1300-1280 \text{ cm}^{-1}$, 1229- 1215 cm^{-1} and the other two absorptions appeared with medium intensities at higher frequencies in the spectra of $Ni(AMP) \cdot 6H_2O$. Since these absorption bands are related to the vibrational frequencies involving the imidazole ring, it seems that the N₇metalation of 5'-AMP changes the electron distribution of the ring system, where the vibration is mostly localized, and therefore causes the purine ring distortion. It has been found [17] that the $C=N^+$ groups have in general higher frequencies than the parent C=N groups, therefore protonation [18] or metalation [19] could bring an increase in the infrared absorption band of the C=N stretching frequency of the imidazole ring in the Ni(II)-AMP compound. Similar behaviour was observed in the spectra of all Pt(II) and Mg(II) complexes synthesized here.

5'-AMP Phosphate Vibrational Frequencies

Previously, we reported [1] the OPO_3^{-} vibrations of mononucleotides. The absorption bands due to the phosphate group of 5'-AMP occur at 1092 cm⁻¹ (broad, strong band related to the PO_3^{-} degenerate vibration), 976 cm⁻¹ (strong, sharp band assigned to the PO_3^{-} symmetric vibration) and 797 cm⁻¹ (medium intensity related to the P–O stretching vibration). The other two absorptions at 530 and 420 cm⁻¹ belong to the PO_3^{-} degenerate and asymmetric deformation frequencies [9, 20].

The Ni(II) ion is indirectly bonded to the phosphate group, through two hydrogen-bonded water molecules in Ni(AMP)·6H₂O. This indirect coordination of the phosphate group causes a small shift in the vibrational frequencies at 1092 and 976 cm⁻¹ ($\Delta \nu = \pm 20$ cm⁻¹), but does not cause any splitting of these absorption bands. The absorption bands at 797, 530 and 420 cm⁻¹ do not show any considerable perturbation upon phosphate hydrogen-bonding (Fig. 3).

The Cu(II) ion is directly bonded to the PO_3^{2-} in Cu₃(GMP)₃·8H₂O [21] and Cu(IMP)·nH₂O [22]. This direct coordination causes considerable shifting and splitting of the phosphate absorption bands at 1092, 976 and near 800 cm⁻¹, whereas indirect bonding of the phosphate group *via* hydrogenbonded water molecules does not alter the position

Fig. 3. FT-IR spectra of 5'-AMPNa₂ and its metal complexes in the region 1178-711 for a, 5'-AMPNa₂; b, Ni(AMP)·6H₂O; c, Cu(AMP)·3H₂O; d, cis-[Pt(AMP)₂-(NH₃)₂]Cl₂·6H₂O; e, Mg(AMP)·10H₂O (pH 7) and f, Mg(AMP)·5H₂O (pH = 4).

of the said absorption bands in the analogous Ni(II), Co(II) and Mn(II) complexes [1].

The IR spectrum of CuAMP·3H₂O synthesized here shows that the phosphate group is directly bonded to the Cu(II) ion (the crystal structure of this compound is not yet known). The spectrum of this compound is substantially different from that of the corresponding Ni(II) complex in the region $1100-900 \text{ cm}^{-1}$ (Fig. 3). There is a splitting of the bands at 1092, 976 and 797 cm⁻¹, which is indicative of a direct phosphate-copper coordination.

The IR spectra of Mg(AMP) \cdot 5H₂O synthesized at pH 4 showed marked similarities with the bands at 1092, 976 and 797 cm⁻¹ (Fig. 3), whereas the spectra of Pt(II) and Mg(II) complexes obtained from neutral solutions bear similarities with the Ni(AMP) \cdot 6H₂O compound containing indirect metal–OPO₃ bonding *via* a hydrogen-bonded water molecule (Fig. 3).

Sugar Vibrational Frequencies

The sugar vibrational frequencies of 5'-AMP appeared as strong, broad absorption bands at $3400-2700 \text{ cm}^{-1}$ (Table II), and as sharp absorption bands in the region $1400-400 \text{ cm}^{-1}$ [5, 9]. Most of these absorption bands are obscured by the strong broad bands of the phosphate group and the base residue, so that pure assignments of the sugar ring

vibrations are difficult to make. The two weak absorption bands at 900-800 cm⁻¹, in the spectra of 5'-AMP, are assigned to the sugar-phosphate vibrational frequencies [23]. These absorption bands are sensitive to metal complexation and this is mainly due to the conformational changes around the phosphate-ribose bond upon direct or indirect phosphate coordination [24].

A band with medium intensity at 728 cm⁻¹ in the spectra of the free base assignable to the breathing mode of the aromatic ring system [8] shifted to a lower frequency in the spectra of all N₇bonded AMP metal complexes. The out-of-plane deformation modes of NH₂ and NH [8, 8–11] at 700–500 cm⁻¹ in the spectra of the free base appeared in the same position with no considerable modification in the spectra of the 5'-AMP metal complexes.

The metal-nitrogen and Pt-halide stretching vibrations of 5'-AMP complexes studied here occurred in the lower region $(400-200 \text{ cm}^{-1})$ of the spectra and will be reported elsewhere.

Conclusion

Using the spectroscopic and structural properties of the crystallographically known Ni(AMP)· $6H_2O$ compound compared to those of the Mg(II) and Pt-(II) complexes studied here, the following remarks can be made. The atomic motions of the purine and pyrimidine ring vibrations in the 5'-AMP molecule are strongly coupled, and therefore the vibrations are mixed, so that an individual assignment for each absorption band is difficult to make. Metalation of the free base residue also modifies the electronic distribution within the ring system and gives more information for the study of the vibrational frequencies.

Metal N_7 -binding of the adenine ring in the structurally known Ni(AMP)·6H₂O and the corresponding Pt(II) and Mg(II) complexes have common spectral changes, which are summarized below:

(a) Similar spectral changes were observed in the region $1700-1570 \text{ cm}^{-1}$ (related to the NH₂ bending and the skeletal vibrational frequencies) with those in Ni(AMP)·6H₂O;

(b) Modification of the absorption bands at 1506 and 1479 cm⁻¹ (assigned to the C_8 -H bending and the N_7 - C_8 stretching vibration);

(c) Splitting and shifting of the absorption bands at 1303, 1245, 1215 and 1175 cm⁻¹ (attributed to the C_8-H bending, N_7-C_8 and N_9-C_8 stretching frequencies) and

(d) The shift of the band at 728 cm^{-1} in the spectrum of the free base related to the breathing mode of the ring system to a lower frequency at about $710-720 \text{ cm}^{-1}$ in the spectra of the metal com-

plexes. The characteristic features of phosphate bonding are: (a) a splitting and shifting of the absorption bands at 1092 and 976 cm⁻¹ which is indicative of direct metal—phosphate coordination and (b) the shifting of the said absorption frequencies with no splitting which is an indication of indirect phosphate metal interaction, through hydrogenbonded water molecules.

It is worth noting that the reaction between Pt-(II) and 5'-AMP produces N_7 -bonded metal complexes with no direct $Pt-OPO_3^{2-}$ interaction. The indirect Pt-phosphate bonding occurs through hydrogen-bonded and coordinated NH₃ molecules (Scheme A). Furthermore, the Mg(II) complexes

synthesized in acidic solution show direct Mg-phosphate interaction as well as N_7 -bonding, whereas for the Mg(II) complexes obtained in neutral media indirect metal-phosphate interaction takes place *via* a coordinated water molecule (Scheme B).

Acknowledgements

We wish to acknowledge the financial assistance of the Natural Science and Engineering Research Council of Canada and Johnson Matthey and Mallory Ltd. for a loan of platinum salts.

References

- 1 T. Theophanides and H. A. Tajmir-Riahi, Can. J. Chem., in press, 1983.
- 2 A. D. Collins, P. de Meester, D. M. L. Goodgame and A. C. Skapski, *Biochim. Biphys. Acta, 402,* 1 (1975).
- 3 G. B. Kauffman and D. O. Cowan, *Inorg. Synthesis*, 239, 7 (1963).
- 4 R. G. Bhattacharyya and I. Bhaduri, J. Inorg. Nucl. Chem., 40, 733 (1978).
- 5 R. C. Lord and G. J. Thomas, Spectrochim. Acta, 23A, 2551 (1967).
- 6 A. Lautie and A. Novak, J. Chim. Phys., 71, 415 (1974).
- 7 L. Chinsky, P. Y. Turpin, M. Duquesene and J. Brahms, Biopolymers, 17, 1347 (1978).
- 8 M. Tsuboi, S. Tokahoshi and I. Horada, 'Physicochemical Properties of Nucleic Acid', Vol. 2, J. Duchense Ed., Academic Press, New York, 91 (1973).

- 9 M. Tsuboi, 'Infrared and Raman Spectroscopy in Basic Principles in Nucleic Acid Chemistry', Vol. 1, pp. 407, Academic Press (1974).
- 10 M. Tsuboi and Y. Nishimura, 'Raman Spectroscopy Linear and Non-linear', Ed. G. Lascombe, pp. 703, Wiley Hyden (1982).
- 11 Y. Kyogoku, S. Higuchi and M. Tsuboi, Spectrochim. Acta, 23A, 969 (1967).
- 12 J. Kraut and L. H. Jensen, Acta Cryst., 16, 79 (1963) and B32, 1850 (1976).
- 13 R. Savoie, D. Poirier, L. Prizant and A. L. Beauchamp, J. Raman Spectrosc., 11, 481 (1982) and Spectrochim. Acta, 38A, 561 (1982).
- 14 T. Theophanides and C. P. Kong, Can. J. Spectrosc., 14, 105 (1969) and 16, 135 (1971). 15 A. Lanir and N. T. Yu, J. Biol. Chem., 254, 5882 (1979).
- 16 T. Theophanides, M. Berjot and L. Bernard, J. Raman

Spectrosc., 6, 109 (1977).

- 17 C. Sandorfy, 'The Chemistry of the Carbon--Nitrogen Double Bond', Ed. S. Patai, p. 42, Wiley, New York (1970).
- 18 M. F. C. Ladd, D. C. Povey, J. I. Bullock and H. A. Tajmir-Riahi, Acta Cryst., B35, 2013 (1979).
- 19 F. A. Hart, M. Ul-Huque and C. N. Caughlan, Chem. Comm., 1240 (1970).
- 20 M. Tsuboi, T. Shimanouchi and T. Kyogoku, Adv. Chem. Phys., 7, 435 (1964).
- 21 K. Aoki, G. R. Clark and J. D. Orbell, Biochim. Biophys. Acta, 425, 369 (1976).
- 22 K. Aoki, Chem. Comm., 600 (1977).
- 23 M. J. Lana and G. J. Thomas, Jr., Biochemistry, 18, 3839 (1979).
- 24 P. Papagiannakopoulos, G. Makrigiannis and T. Theophanides, Inorg. Chim. Acta, 46, 263 (1980).